Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.373
Filtrar
1.
Arkh Patol ; 86(2): 22-29, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38591903

RESUMEN

BACKGROUND: Extracellular vesicles are surrounded by a phospholipid bilayer, carrying various active biomolecules and participating in many physiological and pathological processes, including infectious ones. OBJECTIVE: To research the role of exosomes in intercellular interactions in the pathogenesis of various types of lung damage in fatal cases of COVID-19. MATERIAL AND METHODS: We conducted a clinical and morphological analysis of 118 fatal cases caused by coronavirus infection in Moscow. We selected 32 cases with morphological signs of various types of lung lesions for immunohistochemical reaction (IHC) with antibodies against tetraspanin proteins (CD63, CD81), which are involved in the assembly of exosomes, as well as with antibodies against viral proteins: nucleocapsid and spike protein. We determined the main producing cells of extracellular vesicles and cells containing viral proteins, carried out their comparison and quantitative analysis. RESULTS: IHC reaction with antibodies against CD63 showed cytoplasmic granular uniform and subapical staining of cells, as well as granular extracellular staining. We determined similar staining using antibodies against viral proteins. Extracellular vesicles were found in the same cells as viral proteins. The main producing cells of vesicles and cells containing viral proteins were found to be macrophages, type II pneumocytes, and endothelial cells. CONCLUSION: Taking into account the results of the literature, the localization of viral proteins and extracellular vesicles in the same cells indicates the key role of vesicles in the pathogenesis of various forms of lung damage by the SARS-CoV-2 virus, in the dissemination of the pathogen in the organism, which leads to interaction with the adaptive immune system and the formation of immunity.


Asunto(s)
COVID-19 , Exosomas , Lesión Pulmonar , Humanos , Exosomas/química , Exosomas/metabolismo , COVID-19/metabolismo , Lesión Pulmonar/metabolismo , SARS-CoV-2 , Células Endoteliales , Proteínas Virales/análisis , Proteínas Virales/metabolismo
2.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587486

RESUMEN

ß-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.


Asunto(s)
COVID-19 , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil , Liposomas , Proteínas de Unión al ARN , SARS-CoV-2 , Humanos , Proliferación Celular , Análisis por Conglomerados , COVID-19/metabolismo , COVID-19/virología , Citoplasma , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/metabolismo , Células HeLa , Liposomas/metabolismo , Orgánulos , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
3.
Egypt J Immunol ; 31(2): 93-101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615266

RESUMEN

Biomarkers such as Interleukin-6 (IL-6), Procalcitonin (PCT), C-reactive protein (CRP) and Neutrophil-Lymphocyte Ratio (NLR) have a role in the pathogenesis of severe coronavirus disease 2019 (COVID-19). The aim of this study was to explore the differences between serum levels of such biomarkers in severe and non-severe COVID-19 cases and compare them with normal people and to evaluate the sociodemographic variables and chronic diseases effect on the severity of COVID-19. The study included 160 subjects, divided into two groups, a case group of 80 patients, and a control group of 80 normal persons. The case group was divided into two subgroups: 40 severe COVID-19 patients and 40 patients with non-severe disease. Blood IL-6 was assessed by an enzyme-linked immunosorbent assay (ELISA), PCT by an immunoassay, CRP by an immunoturbidimetric assay and NLR from CBC. The levels of IL-6, PCT, CRP, and NLR were significantly higher in the case group than in control group (p= 0.001, for all). However, there was no difference between these biomarkers level in the non-severe COVID-19 subgroup and the control group (p>0.05 for all). The proportion of severe COVID-19 was significantly higher in patients aged >50 years, and in patients with chronic diseases (p=0.046 and p=0.001, respectively). We also found a strong correlation between such biomarkers and old age, and chronic diseases with the disease severity. There was a significant difference in the level of the three biomarkers (IL-6, PCT, CRP, and NLR) between patients' subgroups and the control group. In conclusion, since the levels of these biomarkers are correlated with the severity of the COVID-19 disease, and there was a difference in the levels between the groups with severe and non-severe symptoms, we suggest a role of these biomarkers in predicting the severity COVID-19 disease and its poor prognosis.


Asunto(s)
Proteína C-Reactiva , COVID-19 , Interleucina-6 , Polipéptido alfa Relacionado con Calcitonina , Humanos , Biomarcadores , Enfermedad Crónica , COVID-19/diagnóstico , COVID-19/metabolismo , Linfocitos , Neutrófilos , Pronóstico , Gravedad del Paciente
4.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638822

RESUMEN

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ratones , Animales , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Células Endoteliales/metabolismo , Mastocitos/metabolismo , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo
5.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654010

RESUMEN

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Factor 7 de Crecimiento de Fibroblastos , Islotes Pancreáticos , Organoides , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , SARS-CoV-2/genética , Organoides/virología , Organoides/metabolismo , Organoides/patología , Animales , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Islotes Pancreáticos/patología , Factor 7 de Crecimiento de Fibroblastos/genética , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Ratones , Masculino , Células Madre Embrionarias Humanas/metabolismo , Secreción de Insulina/genética
6.
BMC Infect Dis ; 24(1): 427, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649864

RESUMEN

BACKGROUND: COVID-19 has been shown to increase the risk of extracorporeal coagulation during hemodialysis in patients, but the underlying mechanism remains unclear. This study aimed to investigate the effect and mechanism of COVID-19 on the risk of extracorporeal coagulation in patients with chronic kidney disease undergoing hemodialysis. METHODS: A retrospective analysis of the extracorporeal coagulation status of 339 hemodialysis patients at our center before and after COVID-19 infection was performed, including subgroup analyses. Post-infection blood composition was analyzed by protein spectrometry and ELISA. RESULTS: Compared to the pre-COVID-19 infection period, COVID-19-induced extracorporeal coagulation predominantly occurred in patients with severe/critical symptoms. Further proteomic analysis demonstrated that in patients with severe/critical symptoms, the coagulation cascade reaction, platelet activation, inflammation, and oxidative stress-related pathways were significantly amplified compared to those in patients with no/mild symptoms. Notably, the vWF/FBLN5 pathway, which is associated with inflammation, vascular injury, and coagulation, was significantly upregulated. CONCLUSIONS: Patients with severe/critical COVID-19 symptoms are at a higher risk of extracorporeal coagulation during hemodialysis, which is associated with the upregulation of the vWF/FBLN5 signaling pathway. These findings highlight the importance of early anticoagulant therapy initiation in COVID-19 patients with severe/critical symptoms, particularly those undergoing hemodialysis. Additionally, vWF/FBLN5 upregulation may be a novel mechanism for virus-associated thrombosis/coagulation.


Asunto(s)
COVID-19 , Diálisis Renal , SARS-CoV-2 , Transducción de Señal , Regulación hacia Arriba , Factor de von Willebrand , Humanos , COVID-19/sangre , COVID-19/metabolismo , Diálisis Renal/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Factor de von Willebrand/metabolismo , Factor de von Willebrand/análisis , Anciano , Coagulación Sanguínea , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/sangre , Adulto
7.
J Med Virol ; 96(4): e29597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587211

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic has resulted in the loss of millions of lives, although a majority of those infected have managed to survive. Consequently, a set of outcomes, identified as long COVID, is now emerging. While the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the respiratory system, the impact of COVID-19 extends to various body parts, including the bone. This study aims to investigate the effects of acute SARS-CoV-2 infection on osteoclastogenesis, utilizing both ancestral and Omicron viral strains. Monocyte-derived macrophages, which serve as precursors to osteoclasts, were exposed to both viral variants. However, the infection proved abortive, even though ACE2 receptor expression increased postinfection, with no significant impact on cellular viability and redox balance. Both SARS-CoV-2 strains heightened osteoclast formation in a dose-dependent manner, as well as CD51/61 expression and bone resorptive ability. Notably, SARS-CoV-2 induced early pro-inflammatory M1 macrophage polarization, shifting toward an M2-like profile. Osteoclastogenesis-related genes (RANK, NFATc1, DC-STAMP, MMP9) were upregulated, and surprisingly, SARS-CoV-2 variants promoted RANKL-independent osteoclast formation. This thorough investigation illuminates the intricate interplay between SARS-CoV-2 and osteoclast precursors, suggesting potential implications for bone homeostasis and opening new avenues for therapeutic exploration in COVID-19.


Asunto(s)
COVID-19 , Osteoclastos , Humanos , Osteoclastos/metabolismo , Síndrome Post Agudo de COVID-19 , COVID-19/metabolismo , SARS-CoV-2 , Diferenciación Celular
8.
Signal Transduct Target Ther ; 9(1): 74, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528022

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/metabolismo , Inflamación/genética , Inflamación/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Glucocorticoides
9.
J Med Virol ; 96(3): e29556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511554

RESUMEN

Neutrophil extracellular traps (NETs) play a role in innate pathogen defense and also trigger B-cell response by providing antigens. NETs have been linked to vaccine-induced thrombotic thrombocytopenia. We postulated a potential link between NET biomarkers, NET-promoting autoantibodies, and adverse events (AEs) after COVID-19 vaccine boosters. Healthy donors (HDs) who received ChAdOx1-S (A), mRNA-1273 (M), or recombinant protein (MVC-COV1901) vaccines at the National Taiwan University Hospital between 2021 and 2022 were recruited. We measured serial NET-associated biomarkers, citrullinated-histone3 (citH3), and myeloperoxidase (MPO)-DNA. Serum citH3 and MPO-DNA were significantly or numerically higher in HDs who reported AEs (n = 100, booster Day 0/Day 30, p = 0.01/p = 0.03 and p = 0.30/p = 0.35, respectively). We also observed a positive correlation between rash occurrence in online diaries and elevated citH3. A linear mixed model also revealed significantly higher citH3 levels in mRNA-1273/ChAdOx1-S recipients than MVC-COV1901 recipients. Significant positive correlations were observed between the ratios of anti-heparin platelet factor 4 and citH3 levels on Booster Day 0 and naïve and between the ratios of anti-NET IgM and citH3 on Booster Day 30/Day 0 in the AA-M and MM-M group, respectively. The increased levels of citH3/MPO-DNA accompanied by NET-promoting autoantibodies suggest a potential connection between mRNA-1273/ChAdOx1-S vaccines and cardiovascular complications. These findings provide insights for risk assessments of future vaccines.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Trampas Extracelulares/metabolismo , Vacunas contra la COVID-19/efectos adversos , Autoanticuerpos , Vacuna nCoV-2019 mRNA-1273 , ARN Mensajero/genética , ARN Mensajero/metabolismo , COVID-19/prevención & control , COVID-19/metabolismo , Biomarcadores , ChAdOx1 nCoV-19 , Vacunación , ADN/metabolismo , Adenoviridae
10.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542424

RESUMEN

Disease modifiers, whether from cancer, sepsis, systemic inflammation, or microbial pathogens, all appear to induce epithelial barrier leak, with induced changes of the Tight Junctional (TJ) complex being pivotal to the process. This leak-and the ensuant breakdown of compartmentation-plays a central role in disease morbidity on many levels. Accumulation of lung water in the luminal compartment of airways was a major driver of morbidity and mortality in COVID-19 and is an excellent example of the phenomenon. Increasing awareness of the ability of micronutrients to improve basal barrier function and reduce barrier compromise in pathophysiology may prove to be a low-cost, safe, and easily administered prophylactic and/or therapeutic option amenable to large populations. The growing appreciation of the clinical utility of supplemental doses of Vitamin D in COVID-19 is but one example. This narrative review is intended to propose a general theory on how and why micronutrients-at levels above normal dietary intake-successfully remodel TJs and improve barrier function. It discusses the key difference between dietary/Recommended Daily Allowance (RDA) levels of micronutrients versus supplemental levels, and why the latter are needed in disease situations. It advances a hypothesis for why signal transduction regulation of barrier function may require these higher supplemental doses to achieve the TJ remodeling and other barrier element changes that are clinically beneficial.


Asunto(s)
COVID-19 , Micronutrientes , Humanos , Micronutrientes/metabolismo , Uniones Estrechas/metabolismo , Vitaminas/metabolismo , Vitamina D/metabolismo , COVID-19/metabolismo
11.
Virology ; 594: 110052, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507920

RESUMEN

SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Animales , COVID-19/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NAD , SARS-CoV-2/metabolismo , Macaca/metabolismo , ARN Mensajero/metabolismo
12.
Mol Biol Cell ; 35(5): ar62, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507240

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98. We show that Rae1 alone is not necessary to support p-STAT1 import or nuclear export of poly(A) RNA. Moreover, the loss of Rae1 suppresses the transport inhibitory activity of Orf6. We propose that the Rae1/Nup98 complex strategically positions Orf6 within the NPC where it alters FG-Nup interactions and their ability to support nuclear transport. In addition, we show that Rae1 is required for normal viral protein production during SARS-CoV-2 infection presumably through its role in supporting Orf6 function.


Asunto(s)
Transporte Activo de Núcleo Celular , COVID-19 , Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Interferones/metabolismo , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN Mensajero/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo
13.
Int Immunopharmacol ; 131: 111774, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38489971

RESUMEN

Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.


Asunto(s)
Amidas , COVID-19 , Neumonía , Fibrosis Pulmonar , Pirazinas , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Bleomicina/efectos adversos , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos , Inflamación/metabolismo , Fibrosis , Neumonía/metabolismo , COVID-19/metabolismo
14.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453000

RESUMEN

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Asunto(s)
COVID-19 , Receptores de Superficie Celular , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , FN-kappa B/metabolismo , SARS-CoV-2/metabolismo , Sistema de Señalización de MAP Quinasas , Células THP-1 , Péptidos beta-Amiloides , COVID-19/metabolismo , Moléculas de Adhesión Celular/metabolismo , Transducción de Señal , Lectinas Tipo C/metabolismo , Polisacáridos/metabolismo , Células Dendríticas/metabolismo
15.
Cell Rep ; 43(3): 113891, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427561

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Ribosómico/metabolismo , COVID-19/metabolismo , Ribosomas/metabolismo , Proteínas Virales/metabolismo , Proteínas no Estructurales Virales/metabolismo
16.
Antiviral Res ; 224: 105857, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453031

RESUMEN

The emerging SARS-CoV-2 variants are evolving to evade human immunity and differ in their pathogenicity. While evasion of the variants from adaptive immunity is widely investigated, there is a paucity of knowledge about their interactions with innate immunity. Inflammasome assembly is one of the most potent mechanisms of the early innate response to viruses, but when it is inappropriate, it can perpetuate tissue damage. In this study, we focused on the capacity of SARS-CoV-2 Alpha and Delta variants to activate the NLRP3 inflammasome. We compared the macrophage activation, particularly the inflammasome formation, using Alpha- and Delta-spike virus-like particles (VLPs). We found that VLPs of both variants activated the inflammasome even without a priming step. Delta-spike VLPs had a significantly stronger effect on triggering pyroptosis and inflammasome assembly in THP-1 macrophages than did Alfa-spike VLPs. Cells treated with Delta VLPs showed greater cleavage of caspase-1 and IL-1ß release. Furthermore, Delta VLPs induced stronger cytokine secretion from macrophages and caused essential impairment of mitochondrial respiration in comparison to Alpha VLPs. Additionally, infection of primary human monocyte-derived macrophages with the SARS-CoV-2 variants confirmed the observations in VLPs. Collectively, we revealed that SARS-CoV-2 Delta had a greater impact on the inflammasome activation, cell death and mitochondrial respiration in macrophages than did the Alpha variant. Importantly, the differential response to the SARS-CoV-2 variants can influence the efficacy of therapies targeting the host's innate immunity.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Inflamasomas/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Macrófagos
17.
Nat Cell Biol ; 26(4): 628-644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514841

RESUMEN

Excessive inflammation is the primary cause of mortality in patients with severe COVID-19, yet the underlying mechanisms remain poorly understood. Our study reveals that ACE2-dependent and -independent entries of SARS-CoV-2 in epithelial cells versus myeloid cells dictate viral replication and inflammatory responses. Mechanistically, SARS-CoV-2 NSP14 potently enhances NF-κB signalling by promoting IKK phosphorylation, while SARS-CoV-2 ORF6 exerts an opposing effect. In epithelial cells, ACE2-dependent SARS-CoV-2 entry enables viral replication, with translated ORF6 suppressing NF-κB signalling. In contrast, in myeloid cells, ACE2-independent entry blocks the translation of ORF6 and other viral structural proteins due to inefficient subgenomic RNA transcription, but NSP14 could be directly translated from genomic RNA, resulting in an abortive replication but hyperactivation of the NF-κB signalling pathway for proinflammatory cytokine production. Importantly, we identified TLR1 as a critical factor responsible for viral entry and subsequent inflammatory response through interaction with E and M proteins, which could be blocked by the small-molecule inhibitor Cu-CPT22. Collectively, our findings provide molecular insights into the mechanisms by which strong viral replication but scarce inflammatory response during the early (ACE2-dependent) infection stage, followed by low viral replication and potent inflammatory response in the late (ACE2-independent) infection stage, may contribute to COVID-19 progression.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/metabolismo , COVID-19/virología , FN-kappa B/metabolismo , SARS-CoV-2/fisiología , Replicación Viral , Interacciones Huésped-Parásitos
18.
Sci Rep ; 14(1): 6429, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499607

RESUMEN

Given the huge impact of the COVID-19 pandemic, it appears of paramount importance to assess the cognitive effects on the population returning to work after COVID-19 resolution. Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) represent promising biomarkers of neuro-axonal damage and astrocytic activation. In this cohort study, we explored the association between sNfL and sGFAP concentrations and cognitive performance in a group of 147 adult workers with a previous asymptomatic SARS-CoV-2 infection or mild COVID-19, one week and, in 49 of them, ten months after SARS-Cov2 negativization and compared them to a group of 82 age and BMI-matched healthy controls (HCs). sNfL and sGFAP concentrations were assessed using SimoaTM assay Neurology 2-Plex B Kit. COVID-19 patients were interviewed one-on-one by trained physicians and had to complete a list of questionnaires, including the Cognitive Failure Questionnaire (CFQ). At the first assessment (T0), sNfL and sGFAP levels were significantly higher in COVID-19 patients than in HCs (p < 0.001 for both). The eleven COVID-19 patients with cognitive impairment had significantly higher levels of sNfL and sGFAP than the others (p = 0.005 for both). At the subsequent follow-up (T1), sNfL and sGFAP levels showed a significant decrease (median sNfL 18.3 pg/mL; median sGFAP 77.2 pg/mL), although they were still higher than HCs (median sNfL 7.2 pg/mL, median sGFAP 63.5 pg/mL). Our results suggest an ongoing damage involving neurons and astrocytes after SARS-Cov2 negativization, which reduce after ten months even if still evident compared to HCs.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Adulto , Humanos , Biomarcadores , Estudios de Cohortes , COVID-19/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Filamentos Intermedios/metabolismo , Esclerosis Múltiple/metabolismo , Proteínas de Neurofilamentos , Pandemias , ARN Viral/metabolismo , SARS-CoV-2
19.
BMC Infect Dis ; 24(1): 270, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429664

RESUMEN

BACKGROUND: The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS: A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS: IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION: Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.


Asunto(s)
COVID-19 , Factores de Transcripción Forkhead , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Anticuerpos Neutralizantes , COVID-19/genética , COVID-19/metabolismo , Factores de Transcripción Forkhead/genética , Genotipo , Haplotipos , Interferones/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo
20.
Front Immunol ; 15: 1287132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348024

RESUMEN

Background: Neutrophil extracellular traps (NETs) play a key role in thrombus formation in patients with coronavirus disease 2019 (COVID-19). However, the existing detection and observation methods for NETs are limited in their ability to provide quantitative, convenient, and accurate descriptions of in situ NETs. Therefore, establishing a quantitative description of the relationship between NETs and thrombosis remains a challenge. Objective: We employed morphological observations of blood cells and statistical analyses to investigate the correlation between the NETs/neutrophilic segmented granulocyte ratio and mortality risk in patients with COVID-19. Methods: Peripheral blood samples were collected from 117 hospitalized patients with COVID-19 between November 2022 and February 2023, and various blood cell parameters were measured. Two types of smudge cells were observed in the blood and counted: lymphatic and neutral smudge cells. Statistical data analysis was used to establish COVID-19 mortality risk assessment indicators. Results: Morphological observations of neutrophilic smudge cells revealed swelling, eruption, and NETs formation in the neutrophil nuclei. Subsequently, the NETs/neutrophilic segmented granulocyte ratio (NNSR) was calculated. A high concentration of NETs poses a fatal risk for thrombus formation in patients. Statistical analysis indicated that a high NNSR was more suitable for evaluating the risk of death in patients with COVID-19 compared to elevated fibrinogen (FIB) and D-dimer (DD) levels. Conclusion: Observing blood cell morphology is an effective method for the detection of NETs, NNSR are important markers for revealing the mortality risk of patients with COVID-19.


Asunto(s)
COVID-19 , Trampas Extracelulares , Trombosis , Humanos , Trampas Extracelulares/metabolismo , COVID-19/metabolismo , Neutrófilos/metabolismo , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...